Dr. Ruijun Zhao, Department Chair, Professor

PhD | Faculty

Address: Office: Wissink (WH) 276
Phone: 507-389-2719
Email: ruijun.zhao@mnsu.edu

Dr. Ruijun Zhao's personal website

 

Education

Primary Areas

  • Mathematical Biology
  • Scientific Computing
  • Applied Mathematics

Publications

  1. R. Zhao, Y.-T. Zhang, and S. Chen. Krylov implicit integration factor WENO method for SIR model with directed diffusion. Discrete and Continuous Dynamical Systems - Series B, 2019.
  2. J. Mohammed-Awel, R. Zhao, E. Numfor, and Suzanne Lenhart. Management strategies in a malaria model combining human and transmission-blocking vaccines. Discrete and Continuous Dynamical Systems - Series B, 2017, 22(3):977-1000.
  3. R. D. Skeel, R. Zhao, and C. B. Post. A minimization principle for transition paths of maximum flux for collective variables. Theoretical Chemistry Accounts, 2017, 136:14.
  4. C. N. Ngonghala, J. Mohammed-Awel, R. Zhao, and O. Prosper. Interplay between insecticide-treated bed-nets and mosquito demography: implications for malaria control. J. Theo. Biol., 2016, 397, pp 179-192.
  5. C. N. Ngonghala, S. Y. Del Valle, R. Zhao and J. Mohammed-Awel. Quantifying the impact of decay in bed-net efficacy on malaria transmission. J. Theo. Biol., 2014, 363, pp 247-261.
  6. R. Zhao and J. Mohammed-Awel. A Mathematical Model Studying Mosquito-stage Transmission-blocking Vaccines. Math. Biosc. and Engin., 2014, 11(5), pp 1229-1245.
  7. F. Agusto, S. Y. Del Valle, K. W Blayneh, C. N. Ngonghala, M. J. Goncalves, N. Li, R. Zhao and H. Gong The Impact of Bed-net Use on Malaria Prevalence. J. Theo. Biol., 2013, 320, pp 58-65.
  8. H. Huang, R. Zhao, B. M. Dickson, R. D. Skeel and C. B. Post. AlphaC Helix as a Switch in the Conformational Transition of Src/CDK-like Kinase Domains.J. Phys. Chem. B, 2012, 116(15), pp 4465-4475.
  9. R. D. Skeel and R. Zhao. Solving Geometric Two-Point Boundary Value Problems.AIP Conf. Proc., 2011, 1389, pp 30-33.
  10. R. Zhao, J. Shen and R. D. Skeel. Maximum Flux Transition Paths of Conformational Change.J. Chem. Theory Comput., 2010, 6(8), pp 2411-2423.
  11. F. A. Milner and R. Zhao. A New Mathematical Model of Syphilis.Math. Model. Nat. Phenom., 5(6) 2010, 96-108.
  12. F. A. Milner and R. Zhao. S-I-R Model with Directed Spatial Diffusion.Math. Pop. Stud., 15 2008, 160-181.
  13. F. A. Milner and R. Zhao A Deterministic Model of Schistosomiasis with Spatial Structure.Math. Biosc. and Engin., 5 2008, 505-522.
  14. R. Zhao and F. A. Milner. A Mathematical Model of Schistosoma mansoni in Biomphalaria glabrata with control strategies.Bull. Math. Biol., 70 2008, 1886-1905.
Torch end