20	2013 Scanning Sheet. Assignment Description:									ription:		Instru	actor: Date: Scanned File Name:
		ABET Outcomes Rubric or Example											A, B, C, D, F
А	В	C D	Е	F	G	Н	I	J	Κ	student %	problem	Outcome #	EE 234 Microprocessors I (3) – Outcomes – Reviewed 2013
2	2										B1	1	Use the chosen microcontroller registers, addressing modes, and instructions properly.
2	2										B2	2	Write instruction sequence to perform arithmetic and logical operations.
2	2										A2	3	Use appropriate instruction sequence to write program loops.
		2									C1	4	Use a microcontroller demo board to run and debug assembly programs.
2	2		2	2								5	Write and call subroutines to perfrom desired functions.
2	2										A1	6	Generate clock signals to be used by the CPU and peripheral modules.
2	2	2	2								C2,D2	7	Explain interrupts and write service routines to handle interrupts.
2		1	2								D1	8	Use parallel port to drive I/O devices such as LEDs, 7-seg. displays, key-pads, stepper motors, and LCD.
			1	2							F1	9	Use timer function to create delays, measure signal parameters such as period, frequency and duty cycle.
			1	2							F2	10	Use timer function to generate waveforms with certain frequency and duty cycle for use in control apps.
			1	2								11	Use serial peripheral interface (SPI) to interface with peripherals such as D/A converter.
2												12	Use microcontroller USART module to communicate with a PC.

1=supporting contribution

2=sig	nificant contribution	a. an ability to apply knowledge of mathematics, science, and engineering
F	Rubric	b. an ability to design and conduct experiments, as well as to analyze and interpret data
5	: Excellent Mastery of Outcome By Vast Majority of Students	c. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic,
4	: Good Mastery of Outcome By Vast Majority of Students	d. an ability to function on multi-disciplinary teams
3	: Adequate Mastery of Outcome By Majority of Students	e. an ability to identify, formulate, and solve engineering problems
2	: Marginal Mastery of Outcome By Most Students	f. an understanding of professional and ethical responsibility
1	: Lack of Mastery of Concept By Most Students	g. an ability to communicate effectively
Impro	ovement Suggestions or Comments:	h. the broad education necessary to understand the impact of engineering solution in a global, economic, environmental, and
		i. a recognition of the need for, and an ability to engage in life-long learning
		j. a knowledge of contemporary issues
		k. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice