20	2013 Scanning Sheet. Assignment Description:									Description:			Instructor: Date: Scanned File Name:
	ABET Outcomes Rubric or Exa									Rubric or	Example		
Α	В	С) E	F	G	Н	I	J	K	student %	problem	Outcome #	EE235 Microprocessor Laboratory (1) - Outcomes Revised 2013
									1			1	Use software development tools to enter and assemble programs written in assembly language, and download the output onto demo board for execution.
									1			2	Perform assembly program debugging using software and hardware tools.
1				1								3	Write interrupt-driven programs in assembly language.
1				1								4	Write assembly programs that utilize parallel ports to drive input and output devices such as LEDs, switches, keypads, seven-segment displays, and LCD.
2				2								5	Write and call subroutine to perform certain desired operations.
1		1										6	Write assembly programs that use timer functions or PWM to control frequency dependent servos and DC motor.
1		1										7	Write assembly routines that use a D/A converter to generate waveforms (or generate sirens using a speaker).
									1			8	Develop assembly programs that use serial interface such as UART or SPI to interface with I/O devices such as seven-segment display driver.
1=	1=supporting contribution												

2=significant contribution	a. an ability to apply knowledge of mathematics, science, and engineering
Rubric	b. an ability to design and conduct experiments, as well as to analyze and interpret data
5: Excellent Mastery of Outcome By Vast Majority of Stud	c. an ability to design a system, component, or process to meet desired needs within realistic constraints
4: Good Mastery of Outcome By Vast Majority of Student	d. an ability to function on multi-disciplinary teams
3: Adequate Mastery of Outcome By Majority of Students	e. an ability to identify, formulate, and solve engineering problems
2: Marginal Mastery of Outcome By Most Students	f. an understanding of professional and ethical responsibility
1: Lack of Mastery of Concept By Most Students	g. an ability to communicate effectively
Improvement Suggestions or Comments:	h. the broad education necessary to understand the impact of engineering solution in a global, economic,
	i. a recognition of the need for, and an ability to engage in life-long learning
	j. a knowledge of contemporary issues
	k. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice