2013 Scanning Sheet. Assignment Description:	Instructor:	Date:	_ Scanned File Name:	
--	-------------	-------	----------------------	--

L	ABET Outcomes Rubric or								Rubric or	Example			
Α	В	С	D E	E F	G	Н		J	K	student %	problem	Outcome #	EE 350 Engineering Electromagnetics (3) – Outcomes Reviewed 2013
2	!			2		1			1			1	Evaluate vector quantities in any 3-dimensional coordinate system.
2				2		2	1		1			2	Apply the concepts and laws pertaining to Electrostatics, and the solution of electrostatics problems, and polarization of materials.
2	!			1		2	1		1			3	Analyze steady electric currents.
2	!			2		1	1		1			4	Evaluate steady magnetic fields, and magnetization of materials.
2	:			2		2	1		1			5	Understand time varying fields and Maxwell's equations.
2	:			2		2	1		1			6	Analyze and evaluate plane electromagnetic wave propagation.
2	:			2		2	1		2			7	Understand and analyze the wave propagation through transmission lines for power delivery.
2	1			1		1	1		2			8	Apply Smith chart use for solution of transmission line problems and impedance matching.
2	!			2		2	1					9	Understand the basics of wave guides.
2	!			1		1	1					10	Understand the basics of polarization effects on plane waves.
2	:			1		1	1			<u> </u>		11	Acquire the basic understanding of how an antenna radiates power over a long distance.

1=supporting contribution

2=significant contribution	a. an ability to apply knowledge of mathematics, science, and engineering		
Rubric	b. an ability to design and conduct experiments, as well as to analyze and interpret data		
	c. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic,		
5: Excellent Mastery of Outcome By Vast Majority of Students	environmental, social, political, ethical, health and safety, manufacturability, and sustainability		
4: Good Mastery of Outcome By Vast Majority of Students	d. an ability to function on multi-disciplinary teams		
3: Adequate Mastery of Outcome By Majority of Students	e. an ability to identify, formulate, and solve engineering problems		
2: Marginal Mastery of Outcome By Most Students	f. an understanding of professional and ethical responsibility		
1: Lack of Mastery of Concept By Most Students	g. an ability to communicate effectively		
	h. the broad education necessary to understand the impact of engineering solution in a global, economic, environmental, and		
Improvement Suggestions or Comments:	societal context		
	i. a recognition of the need for, and an ability to engage in life-long learning		
	j. a knowledge of contemporary issues		
	k. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice		