2013 Scanning Sheet. Assignment Description:											·	Instructor: Date: Scanned File Name:
ABET Outcomes Rubric or Example										Example		
Α	В	C D	E	F	G	Н	I J	K	student %	problem	Outcome #	EE 482 Electromechanics (3) – Outcomes Reviewed 2013
1			1				1				1	Electrical and magnetic circuits (phasors, real/apparent/reactive power, power factor, and 3-phase circuits)
	2							1			2	Analyze transformers and perform test to determine a suitable equivalent circuit.
	2							1			3	Analyze DC machines and perform tests to determine a suitable equivalent circuit.
								1			4	Understand electrical to mechanical power/energy conversion (i.e. VI = P = T*omega).
		1	2								5	Analyze AC machines (synchronous and induction) and perform tests to determine a suitable equivalent circuit.
1	1										6	Conduct laboratories to operate DC and AC machines, measure voltage and current, and interpret recorded data.
1=supporting contribution												
	2=significant contribution											to apply knowledge of mathematics, science, and engineering
Rubric												to design and conduct experiments, as well as to analyze and interpret data
												to design a system, component, or process to meet desired needs within realistic constraints such as economic,
										of Students		al, social, political, ethical, health and safety, manufacturability, and sustainability
4: Good Mastery of Outcome By Vast Majority of Students										tudents		to function on multi-disciplinary teams
3: Adequate Mastery of Outcome By Majority of Students												to identify, formulate, and solve engineering problems
2: Marginal Mastery of Outcome By Most Students												anding of professional and ethical responsibility
									ost Students			to communicate effectively
											h. the broad	education necessary to understand the impact of engineering solution in a global, economic, environmental, and
Imp	Improvement Suggestions or Comments:										societal cont	ext
											i. a recogniti	on of the need for, and an ability to engage in life-long learning
											i a knowled	ge of contemporary issues

k. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice