2013 Scanning Sheet. A	Assignment Description:	Instructo	r: Date:	: Scanned File	Name:
------------------------	-------------------------	-----------	----------	----------------	-------

ABET Outcomes Rubi			Rubric or	Example									
Α	В	С	D	Е	F	G H	ı	J	K	student %	problem	Outcome #	EET 113 DC Circuits (3) – Outcomes Reviewed 2013
2	2 1	1	1		2							1	Use Ohm's law to determine the current in a branch and a voltage between two nodes.
2	2 1	1	1		2							2	Use Kirchoff's laws to determine the current in a branch and a voltage between two nodes of a circuit.
		4	4)								Use Thevenin's (Norton's) Theorem, node analysis, mesh analysis and the superposition theorem to analyze a simple circuit with at least three components.
	2 1	-1	1		2							3	simple circuit with at least three components.
2	2 1	1	1		2							4	Be able to analyze circuits with independent as well as dependent sources and measure currents and voltages.
2	2 1	1	1		2							5	Use available circuit simulation software to simulate DC circuits.
_	1		1			2						6	Effectively prepare written reports of circuit experiments.
2	2	1	1	1	1							7	Be able to measure resistances, voltages between two nodes and current through a branch using a multimeter.
2	2 1	1	1		2							8	Conduct transient analysis on circuit with a single time constant (capacitor or inductor and two or three resistors).

1=supporting contribution

significant contribution	a.	defined engineering technology activities
Rubric	b.	an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require the application of principles and applied procedures or methodologies
5: Excellent Mastery of Outcome By Vast Majority of Students	c.	an ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments; and to apply experimental results to improve processes
Good Mastery of Outcome By Vast Majority of Students	d	an ability to design systems, components, or processes for broadly-defined engineering technology problems appropriate to program educational objectives
3: Adequate Mastery of Outcome By Majority of Students	e.	an ability to function effectively as a member or leader on a technical team
2: Marginal Mastery of Outcome By Most Students	f.	an ability to identify, analyze, and solve broadly-defined engineering technology problems an ability to apply written, oral, and graphical communication in both technical and non-technical environment
1: Lack of Mastery of Concept By Most Students	g.	and an ability to identify and use appropriate technical literature
provement Suggestions or Comments:	h.	an understanding of the need for and an ability to engage in self-directed continuing professional developmen
	l.	an understanding of and a commitment to address professional and ethical responsibilities including a respec
	I.	for diversity a knowledge of the impact of engineering technology solutions in a societal and global
	j.	context; and
	k.	a commitment to quality, timeliness, and continuous improvement.