20	2013 Scanning Sheet. Assignment Description:													_ Instructor: Date: Scanned File Name:
	ABET Outcomes Rubric or Example										Rubric or	Example		
А	в	с	D	Е	F	G F			J	к	student %	problem	Outcome #	EET 114 AC Circuits (3) – Outcomes Reviewed 2013
														Use Kirchoff's law to determine the current in a branch and a voltage between two nodes in an AC
2	1	1	1		1								1	circuit
														Use Thevenin's (Norton's) Theorem nodal analysis and the superposition theorem to analyze a simple
2	1	1	1		1								2	circuit with at least 3 components in an AC circuit.
2	1	2	1	1	1								3	Conduct AC analysis and measurement on circuits with independent sources.
														Conduct AC analysis and measurement on circuits that have resistors, capacitors, and inductors to
2	1	2	1	1	1								4	determine frequency response.
														Compute the power in a circuit with resistors, capacitors, inductors, independent sources and
2	1	1	1		1								5	dependent sources.
2	1	1	1		1								6	Use available circuit simulation software to simulate AC circuit behavior.
2	1	1	1		1								7	Analyze circuits using phasors.
2	1	1	1		1								8	Analyze simple RL and RC DC switching circuits.
														Be able to measure the AC voltage between two nodes and AC current through a branch using a
2	1	2	1	1	1								9	multimeter.
2	1	2	1	1	1								10	Be able to measure the phase difference between two AC voltages using an oscilloscope.
1	1		1			2							11	Effectively prepare written reports of circuit experiments.

1=supporting contribution

2=significant contribution	a.	defined engineering technology activities
Rubric 5: Excellent Mastery of Outcome By Vast Majority of Students	b. c.	an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require the application of principles and applied procedures or methodologies an ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments; and to apply experimental results to improve processes
4: Good Mastery of Outcome By Vast Majority of Students 3: Adequate Mastery of Outcome By Majority of Students	d. e.	an ability to design systems, components, or processes for broadly-defined engineering technology problems appropriate to program educational objectives an ability to function effectively as a member or leader on a technical team
2: Marginal Mastery of Outcome By Most Students1: Lack of Mastery of Concept By Most Students	<u>f.</u> g.	an ability to identify, analyze, and solve broadly-defined engineering technology problems an ability to apply written, oral, and graphical communication in both technical and non-technical environments; and an ability to identify and use appropriate technical literature
Improvement Suggestions or Comments:	h.	an understanding of the need for and an ability to engage in self-directed continuing professional development an understanding of and a commitment to address professional and ethical responsibilities including a respect for diversity
	j. k.	a knowledge of the impact of engineering technology solutions in a societal and global context; and a commitment to quality, timeliness, and continuous improvement.