2013 Scanning Sheet.	Assignment Description	ı :	Instructor:	: Date	e: Scanned File	Name:
A DET Out	202200	Dubricor	Cyampla			

	ABET Outcomes								Rubric or	Example				
Α	В	С	D	Е	F	G	Н	ı	J	K	student %	problem	Outcome #	EET 221 Electronic CAD (3) - Outcomes Reviewed 2013
1													1	Correctly hand letter basic engineering drawings.
2	2					2							2	Use drafting software to create 2-D mechanical drawings.
1						1							3	Correctly dimension mechanical drawings.
2	2 1					2							4	Use a CAD package to generate circuit board schematics.
2	2 1					2							5	Use a CAD package to generate Printed Circuit Board (PCB) layouts.
														Identify electronic package types and use the associated SMT, through hole, and connector
2	2 1				1		2	1	1	1			6	footprints.
														Present the process flow for the ordering of and the manufacturing of PCBs in a graphical
1						1							7	form such as a flow chart or block diagram.
														Create a scheduling time line for the ordering of prototype boards and their revisions, and
1													8	include a budget for the process.
1													9	Determine the amount of current that different sized traces can carry.
1							1						10	Demonstrate knowledge of different CAD and schematic/PCB design tools available.
														Demonstrate knowledge of the environmental implications of different PCB manufacturing
	2				2		2	2	2	2			11	and assembling processes.
														Demonstrate knowledge of the different types of connectors and the appropriate environments
2	2 1		1		2		1	1	1	2			12	and applications to use them in.

1=supporting contribution an ability to select and apply the knowledge, techniques, skills, and modern tools of the discipline to 2=significant contribution broadly defined engineering technology activities an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require the application of principles and applied procedures or Rubric an ability to conduct standard tests and measurements; to conduct, analyze, and interpret 5: Excellent Mastery of Outcome By Vast Majority of Students experiments; and to apply experimental results to improve processes an ability to design systems, components, or processes for broadly-defined engineering technology 4: Good Mastery of Outcome By Vast Majority of Students problems appropriate to program educational objectives an ability to function effectively as a member or leader on a technical team 3: Adequate Mastery of Outcome By Majority of Students an ability to identify, analyze, and solve broadly-defined engineering technology problems 2: Marginal Mastery of Outcome By Most Students an ability to apply written, oral, and graphical communication in both technical and non-technical 1: Lack of Mastery of Concept By Most Students environments; and an ability to identify and use appropriate technical literature an understanding of the need for and an ability to engage in self-directed continuing professional Improvement Suggestions or Comments: an understanding of and a commitment to address professional and ethical responsibilities including a respect for diversity a knowledge of the impact of engineering technology solutions in a societal and global context; and a commitment to quality, timeliness, and continuous improvement.