20	2013 Scanning Sheet. Assignment Description:											Instructor: Date: Scanned File Name:
	ABET Outcomes Rubric or Example								Rubric or	Example	Outcome	
А	В	C	D E	F	GΗ	I	J	κ	student %	problem	#	EET 310 Programming Tools (4) - Outcomes Reviewed 2013
												Analyze, brainstorm, and design/implement specialized hardware to suit the needs of a specific
												application. Then control the specialized hardware with programming tools such as: LabVIEW,
2	1	2	2	2		1		1			1	Keil/Atmel studio, and one of the following: SciLab/Matlab/Maple/Mathcad.
Γ												Use LabVIEW Virtual instrument environment to create programs to control/interface with hardware and
2	1	2	2	2							2	perform numerical analysis, and debug those programs.
2											3	Use Matlab to implement numerical analysis programs.
1	1		1									Understand model-based design concepts and use software tools to create design models.
2			2								5	Create software applications to control/augment hardware.
												Create software programs that can save data collected from hardware and retrieve the data from the saved
2			2								6	files.
												Use scripting languages to automate processes in Matlab/LabVIEW and/or analyzing data on the
1	1										7	computer.
1	1				1						8	Analyze data collected from hardware using Excel
1	1				2						9	Create 2-D and 3-D plots/graphs/charts in SciLab, Matlab, Mathcad, or Maple.

1=supporting contribution

2=significant contribution	a.	an ability to select and apply the knowledge, techniques, skills, and modern tools of the discipline to broadly defined engineering technology activities
Rubric	h	an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering
5: Excellent Mastery of Outcome By Vast Majority of Students	с.	an ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments; and to apply experimental results to improve processes
4: Good Mastery of Outcome By Vast Majority of Students	d.	an ability to design systems, components, or processes for broadly-defined engineering technology problems appropriate to program educational objectives
3: Adequate Mastery of Outcome By Majority of Students2: Marginal Mastery of Outcome By Most Students	e. f.	an ability to function effectively as a member or leader on a technical team an ability to identify, analyze, and solve broadly-defined engineering technology problems
1: Lack of Mastery of Concept By Most Students	g.	an ability to apply written, oral, and graphical communication in both technical and non-technical environments; and an ability to identify and use appropriate technical literature
Improvement Suggestions or Comments:	h. i	an understanding of the need for and an ability to engage in self-directed continuing professional development an understanding of and a commitment to address professional and ethical responsibilities including a respect for diversity
	j.	a knowledge of the impact of engineering technology solutions in a societal and global context; and
	k.	a commitment to quality, timeliness, and continuous improvement.