20	13 Sc	ann	ing	She	et. 1	Assi	ignr	nen	t Description:_			Instructor: Date: Scanned File Name:
		AB	ET	Outc	ome	S			Rubric or	Example	Outcome	
А	вС	D	Е	FC	βH	I	J	Κ	student %	problem	#	EET 315 Programmable Instrumentation (3) - Outcomes Reviewed 2013
												Understand the fundamental syntax and structure of C programs and be able to effective write simple
2	1			1							1	functional programs using the C programming language.
2	1	1		1							2	Understand the design of virtual instrument blocks within the LabView software package.
												Understand the process to implement embedded C programming code within the LabView environment to
	1	1		1							3	generate program flow and data computations.
	1				1						4	Understand the capabilities of data acquisition from external sensors within the LabView environment.
												Understand the capability of LabView to interface actuators and command mechanical devices in
2			2					1			5	response to input data and program structure.

1=supporting contribution

2=significant contribution	a.	an ability to select and apply the knowledge, techniques, skills, and modern tools of the discipline to broadly c engineering technology activities
		an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineeri
Rubric	b.	technology problems that require the application of principles and applied procedures or methodologies
		an ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments; and
5: Excellent Mastery of Outcome By Vast Majority of Students	c.	apply experimental results to improve processes
		an ability to design systems, components, or processes for broadly-defined engineering technology problems
4: Good Mastery of Outcome By Vast Majority of Students	d.	appropriate to program educational objectives
3: Adequate Mastery of Outcome By Majority of Students	e.	an ability to function effectively as a member or leader on a technical team
2: Marginal Mastery of Outcome By Most Students	f.	an ability to identify, analyze, and solve broadly-defined engineering technology problems
		an ability to apply written, oral, and graphical communication in both technical and non-technical environment
1: Lack of Mastery of Concept By Most Students	g.	an ability to identify and use appropriate technical literature
Improvement Suggestions or Comments:	h.	an understanding of the need for and an ability to engage in self-directed continuing professional developme
		an understanding of and a commitment to address professional and ethical responsibilities including a respe
	i.	diversity
		a knowledge of the impact of engineering technology solutions in a societal and global
	j.	context; and
	k.	a commitment to quality, timeliness, and continuous improvement.