2013 Scanning Sheet. Assignment Description:													Instr	uctor: Date: Scanned File Name:
ABET Outcomes Rubric or Example												Example		
А	В	С	D	Е	F	G	н	I	J	к	student %	problem	Outcome #	EET 355 Electrical Power Systems (3) – Outcomes Reviewed 2013
2	1	1	1		1								1	Define prime movers and environmental impacts of power generation.
2	1	1	1		1								2	Determine the power (P, Q, S), power triangle and power factor (relationships between real and complex power) and power factor for electric circuits/systems.
2	1	1	1		1								3	Determine voltages, currents and power in three-phase circuits including phasor representation.
2	1	1	1		1								4	Determine B and H in magnetic circuits and describe μ and hysteresis.
2	1	1	1		1								5	Determine induced voltages produced by Faraday's law of electromagnetic induction applied to toroids, transformers and generators.
2	1	1	1		1	1							6	Describe construction and operation of 3-phase synchronous generators and determine the magnitude, Hz, ω m, of the generated voltage.
2	1	1	1		1	1							7	Describe the construction and operation of power transformers and determine voltages and currents.
2	1	1	1		1	1							8	Describe transmission/distribution and protection of the electrical grid from faults and voltage surges.
		1			1								9	Describe and analyze simple transmission line models.
					1					1			10	Determine and numerically compute power flow in large scale power systems.
				1	1					1			11	Develop power system simulations using PowerWorld.

Total Significant Course Outcomes Mappings a-k A B C D E F G H I J K 1=supporting contribution

2=significant contribution	a.	an ability to select and apply the knowledge, techniques, skills, and modern tools of the discipline to broadly defined engineering technology activities
Rubric	b.	an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require the application of principles and applied procedures or methodologies
		an ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments;
5: Excellent Mastery of Outcome By Vast Majority of Students	C.	and to apply experimental results to improve processes
		an ability to design systems, components, or processes for broadly-defined engineering technology
4: Good Mastery of Outcome By Vast Majority of Students	d.	problems appropriate to program educational objectives
3: Adequate Mastery of Outcome By Majority of Students	e.	an ability to function effectively as a member or leader on a technical team
2: Marginal Mastery of Outcome By Most Students	f.	an ability to identify, analyze, and solve broadly-defined engineering technology problems
		an ability to apply written, oral, and graphical communication in both technical and non-technical
1: Lack of Mastery of Concept By Most Students	g.	environments; and an ability to identify and use appropriate technical literature
		an understanding of the need for and an ability to engage in self-directed continuing professional
Improvement Suggestions or Comments:	h.	development
		an understanding of and a commitment to address professional and ethical responsibilities including a
	i.	respect for diversity
		a knowledge of the impact of engineering technology solutions in a societal and global
	j.	context; and
	k.	a commitment to quality, timeliness, and continuous improvement.