201	2013 Scanning Sheet. Assignment Description:												Instru	uctor: Date: Scanned File Name:
	ABET Outcomes Rubric or Example											Example		
													Outcome	
A	В	С	D	Е	F	G	Н	I	J	Κ	student %	problem	#	EET 452 Operational Amplifier Applications (3) – Outcomes Revised 2016
2	1	1	1		1								1	Understand op amp terminal characteristics.
2	1	1	1		1								2	Understand the DC and AC characteristics of op amps through application in lab experiments and analytically.
2	1	2	1	1	1					1			3	Apply op amps for comparator circuits in lab experiments and analytically.
2	1	1	1		1									Apply op amps for the design and implementation of various types of oscillators in lab experiments and analytically.
2	1	1	1		1								5	Apply op amps for the design of active filters in lab experiments and analytically.
2	1	2	1	1	1					1			6	Apply op amps for signal processing in lab experiments and analytically.
2	1	1	1		1								7	Understand the use of op amps for A/D and D/A conversion.
2	1	1	1		1								8	Understand the operation of Phase Locked Loops.

1=supporting contribution

		an ability to select and apply the knowledge, techniques, skills, and modern tools of the discipline to
esignificant contribution	a.	broadly defined engineering technology activities
		an ability to select and apply a knowledge of mathematics, science, engineering, and technology to
		engineering technology problems that require the application of principles and applied procedures or
Rubric	b.	methodologies
		an ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments
5: Excellent Mastery of Outcome By Vast Majority of Students	c.	and to apply experimental results to improve processes
		an ability to design systems, components, or processes for broadly-defined engineering technology
4: Good Mastery of Outcome By Vast Majority of Students	d.	problems appropriate to program educational objectives
3: Adequate Mastery of Outcome By Majority of Students	e.	an ability to function effectively as a member or leader on a technical team
2: Marginal Mastery of Outcome By Most Students	f.	an ability to identify, analyze, and solve broadly-defined engineering technology problems
		an ability to apply written, oral, and graphical communication in both technical and non-technical
1: Lack of Mastery of Concept By Most Students	g.	environments; and an ability to identify and use appropriate technical literature
		an understanding of the need for and an ability to engage in self-directed continuing professional
nprovement Suggestions or Comments:	h.	development
		an understanding of and a commitment to address professional and ethical responsibilities including a
	i.	respect for diversity
		a knowledge of the impact of engineering technology solutions in a societal and global
	j.	context; and
	k.	a commitment to quality, timeliness, and continuous improvement.