Catalog Year

2020-2021

Degree

Bachelor of Science

Credits

128

Locations

Mankato

Accreditation

ABET

Accreditation Board for Engineering and Technology

Electronic Engineering Technology (BS)

Program Requirements

Required General Education

Students in this degree program must complete 21 additional general education course credit hours to meet university general education and diverse cultures requirements.

A course in communication principles to develop skills in the analysis and presentation of speeches.

Prerequisites: none

Goal Areas: GE-1B

This course helps students develop a flexible writing process, practice rhetorical awareness, read critically to support their writing, research effectively, represent others ideas in multiple ways, reflect on their writing practices, and polish their work.

Prerequisites: none

Goal Areas: GE-1A

Prerequisites to the Major

his course presents algorithmic approaches to problem solving and computer program design using the C language. Students will explore Boolean expressions, implement programs using control structures, modular code and file input/output, and interface with external hardware using robots and sensors.

Prerequisites: EE 106, EET 141

A course that teaches how to write computer assembly language programs, make subroutine calls, perform I/O operations, handle interrupts and resets, interface with a wide variety of peripheral chips to meet the requirements of applications.

Prerequisites: EE 107 or EET 142

Use of development boards and assembly language programming to handle interrupts, interface with parallel I/O ports, memory, and timers. Experiments will involve signal and frequency measurements, data conversions, and interface design. EE 234 must be completed before taking this course or taken concurrently. If you would like to take it concurrently, please contact the instructor for permission.

Prerequisites: EE 234

A study of DC electrical circuits, Kirchhoff's laws, series and parallel circuits, inductors, capacitors, circuit response to RL, RC and RLC circuits. Thevenin's equivalent circuit theorem, and other network analysis theorems. Use of dependent sources in DC circuits. MATH 112 or 115 may be taken concurrently.

Prerequisites: MATH 112 or MATH 115

A study of AC circuits, power, phasors, series and parallel AC networks, and network analysis theorems. Ohm's Laws and Kirchhoff's Laws for AC circuits. Use of dependent sources in AC circuits. MATH 113 or 115 must be taken concurrently.

Prerequisites: MATH 113 or MATH 115 may be taken concurrently.

This course covers digital circuit and logic needed for electronic and computer engineering technology. Covers binary arithmetic, timing anlaysis, TTL, CMOS, logic gates, Boolean algebra, multiplexer, counter, adder, comparator, logic simulation, flip-flops, registers, and use of digital test equipment. Students design and build a complex architecture from small-scale logic components. Coreq: EET 113 Fall

Prerequisites: none

Sequential cuircuits, logic timing, clock distribution, counter, LED display, shift register, transceiver, 555 timer, 555 oscillator, D/A converter, RAM, ROM, mass memory, synchronous logic, asynchronous logic, microprocessor-interfacing, testability, and simulation.

Prerequisites: EE 107, EET 142

Drafting principles involving use of computer electronic CAD software in laying out block diagrams, schematic diagrams, production drawings, graphical presentation of data, and printed circuit board layout and construction.

Prerequisites: EET 113

An introduction to semiconductor theory and circuits: includes characteristics curves, biasing techniques and small signal analysis of FETs and MOSFETs, feedback concept, BJT and FETs frequency response. Prereq: EET 114 or concurrent

Prerequisites: EET 113 

An introduction to differential amplifier, linear and nonlinear operational amplifiers, power amplifiers, linear digital ICs, oscillators, power supplies, D/A, A/D conversion, four layered devices and their applications.

Prerequisites: MATH 121, PHYS 211, EET 222

This course will cover topics of precalculus mathematics. Topics covered will include functions, graphs of functions, exponential and logarithmic functions, conic sections, systems of equations and inequalities, matrices, trigonometric functions, circular functions, vectors and complex numbers, induction, series and probability.

Prerequisites: Satisfy Math Placement Table in this section, or grade of P in MATH 098.

Goal Areas: GE-04

Limits, continuity, the derivative and applications, transcendental functions, L'Hopital's Rule, and development of the Riemann integral.

Prerequisites: Satisfy Placement Table in this section, MATH 115 or both MATH 112 and MATH 113 with “C” (2.0) or better.

Goal Areas: GE-04

A continuation of the study of calculus from MATH 121 including transcendental functions, L'Hopital's rule, techniques of integration, and vectors in two and three dimensions. Content is intended for students enrolled in any engineering technology program. Credit for both MATH 127 and MATH 122 is not allowed.

Prerequisites: MATH 121 with “C” (2.0) or better or consent

General background in physical concepts for those who do not plan advanced study in physics or engineering. Topics include mechanics, fluids, heat and thermodynamics. Lecture and laboratory.

Prerequisites: Either MATH 112 and MATH 113, or MATH 115

Goal Areas: GE-02, GE-03

Includes waves and sound, electricity and magnetism, light and optics, and topics in modern physics. Lecture and laboratory.

Prerequisites: PHYS 211 

Major Common Core

Three (3) credits of EET 497 may be used to satisfy common core requirements.

This course is an introduction to general chemistry. It is a non-laboratory class designed to prepare students for CHEM 201 or to be utilized as a general education course. This course will address more mathematical relationships than CHEM 106. Credit will not be given to students who have previously taken a chemistry course at or above Chem 111 and received a passing grade.

Prerequisites: none

Goal Areas: GE-03

Create working programmable hardware using FPGA, GAL and other logic technology. Use industry standard tools such as Verilog, Xilinx, Orcad and Multisim along with development kits and extension boards to implement programmable systems. Interface LED displays, switches and I.O devices with programmable logic to create processing systems. Evolution of programming logic and analog circuits.

Prerequisites: EE 234 and EE 235 or EET 254

An introduction to tools, equipment, materials, and techniques used in fabrication of electronic projects and printed circuit boards.

Prerequisites: EET 221

Electrical power and magnetic circuit concepts, transformers, generators and motors (DC, synchronous, induction), special purpose motors, power-electronic motor drivers, prime movers/alternatives, generation, transmission/distribution, system stability/protection.

Prerequisites: EET 114, MATH 127, PHYS 212

Operational amplifier circuits utilized in filters, sensors, comparators, voltage regulators, device testing, measurement systems, multipliers, phase-locked loops, and A/D converters. Differential amplifier basics. Linear integrated circuit processing.

Prerequisites: MATH 127, EET 223

Communications principles and systems. Practical engineering aspects involved in modulation-demodulation, receivers, transmitters and filters. Also included are radiation and antennas, guided waves, microwaves and microwave systems. Course must be taken concurrently with STAT 221.

Prerequisites: EET 223

Automation components and subsystems involving sensors, transistors, logic, amplifiers, software, microprocessors, PLC's, actuators, encoders, stages, motors, controllers and drives. Students design, simulate, build, test and document automation systems for Capstone projects.

Prerequisites: EET 223, EET 384

Continues building skills in automation components and subsystems involving sensors, transistors, logic, amplifiers, software, microprocessors, PLC's, actuators, encoders, stages, motors, controllers and drives. Students design, simulate, build, test and document automation systems for Capstone projects.

Prerequisites: EET 461 

A study of a high performance microprocessor architecture. Applications of a microprocessor for monitoring and controlling systems will be studied. Optimal utilization of a microprocessors resources will be stressed. PC programming in assembly and a high level language.

Prerequisites: (EE 234 and EE 235) or EET 254

Should be taken at end of junior year. Permission required. Pre: 40 hrs EET credits or written permission from program coordinator.

Prerequisites: none

This course is focused on quality assurance systems, management philosophies, methodology, function and impact of quality systems in manufacturing operations. Development and application of statistical process control tools.

Prerequisites: STAT 154

Major Restricted Electives

(choose a minimum of 7 credits from 300-level and 400-level courses with advisor's approval)

Major Unrestricted Electives

(choose one of the following)

An introduction to statistical concepts and methods that is applicable to all disciplines. Topics include descriptive measures of data, probability and probability distributions, statistical inference, tests of hypotheses, confidence intervals, correlation, linear regression, and analysis of variance. The use of statistical software will be emphasized. Prereq: ACT Math sub-score of 19 or higher, successful completion of MATH 098 or appropriate placement scores (see Placement Information under Statistics) Fall, Spring, Summer GE-4

Prerequisites: Satisfy Placement Table in this section, or MATH 098 with grade of P. 

Goal Areas: GE-02, GE-04

An introduction to statistics with emphasis on the applied probability models used in Science and Engineering. Topics covered include samples, probability, probability distributions, estimation, one and two samples hypotheses tests, correlation, simple and multiple linear regressions.

Prerequisites: MATH 112 with grade of “C” (2.0) or better 

A calculus based introduction to probability and statistics. Topics include probability, random variables, probability distributions (discrete and continuous), joint probability distributions (discrete and continuous), statistical inference (both estimation and hypothesis testing), confidence intervals for distribution of parameters and their functions, sample size determinations, analysis of variance, regression, and correlation. This course meets the needs of the practitioner and the person who plans further study in statistics. Same as MATH 354. Prereq: MATH 122 with C or better or consent Fall, Spring, Summer

Prerequisites: MATH 122 with C or better or consent 

Other Graduation Requirements

Overview of accounting and finance and their interactions with engineering. Lectures include the development and analysis of financial statements, time value of money, decision making tools, cost of capital, depreciation, project anaysis and payback, replacement analysis, and other engineering decision making tools.

Prerequisites: Advanced standing in the program

4-Year Plan

The 4-Year Plan is a model for completing your degree in a timely manner. Your individual 4-Year plan may change based on a number of variables including transfer courses and the semester/year you start your major. Carefully work with your academic advisors to devise your own unique plan.
* Please meet with your advisor on appropriate course selection to meet your educational and degree goals.

First Year

Fall - 15 Credits

This course helps students develop a flexible writing process, practice rhetorical awareness, read critically to support their writing, research effectively, represent others ideas in multiple ways, reflect on their writing practices, and polish their work.

Prerequisites: none

Goal Areas: GE-1A

A study of DC electrical circuits, Kirchhoff's laws, series and parallel circuits, inductors, capacitors, circuit response to RL, RC and RLC circuits. Thevenin's equivalent circuit theorem, and other network analysis theorems. Use of dependent sources in DC circuits. MATH 112 or 115 may be taken concurrently.

Prerequisites: MATH 112 or MATH 115

This course will cover topics of precalculus mathematics. Topics covered will include functions, graphs of functions, exponential and logarithmic functions, conic sections, systems of equations and inequalities, matrices, trigonometric functions, circular functions, vectors and complex numbers, induction, series and probability.

Prerequisites: Satisfy Math Placement Table in this section, or grade of P in MATH 098.

Goal Areas: GE-04

This course covers digital circuit and logic needed for electronic and computer engineering technology. Covers binary arithmetic, timing anlaysis, TTL, CMOS, logic gates, Boolean algebra, multiplexer, counter, adder, comparator, logic simulation, flip-flops, registers, and use of digital test equipment. Students design and build a complex architecture from small-scale logic components. Coreq: EET 113 Fall

Prerequisites: none

Spring - 16 Credits

A course in communication principles to develop skills in the analysis and presentation of speeches.

Prerequisites: none

Goal Areas: GE-1B

his course presents algorithmic approaches to problem solving and computer program design using the C language. Students will explore Boolean expressions, implement programs using control structures, modular code and file input/output, and interface with external hardware using robots and sensors.

Prerequisites: EE 106, EET 141

A study of AC circuits, power, phasors, series and parallel AC networks, and network analysis theorems. Ohm's Laws and Kirchhoff's Laws for AC circuits. Use of dependent sources in AC circuits. MATH 113 or 115 must be taken concurrently.

Prerequisites: MATH 113 or MATH 115 may be taken concurrently.

Limits, continuity, the derivative and applications, transcendental functions, L'Hopital's Rule, and development of the Riemann integral.

Prerequisites: Satisfy Placement Table in this section, MATH 115 or both MATH 112 and MATH 113 with “C” (2.0) or better.

Goal Areas: GE-04

General Education Course * 3 credits

Second Year

Fall - 17 Credits

A continuation of the study of calculus from MATH 121 including transcendental functions, L'Hopital's rule, techniques of integration, and vectors in two and three dimensions. Content is intended for students enrolled in any engineering technology program. Credit for both MATH 127 and MATH 122 is not allowed.

Prerequisites: MATH 121 with “C” (2.0) or better or consent

Sequential cuircuits, logic timing, clock distribution, counter, LED display, shift register, transceiver, 555 timer, 555 oscillator, D/A converter, RAM, ROM, mass memory, synchronous logic, asynchronous logic, microprocessor-interfacing, testability, and simulation.

Prerequisites: EE 107, EET 142

General background in physical concepts for those who do not plan advanced study in physics or engineering. Topics include mechanics, fluids, heat and thermodynamics. Lecture and laboratory.

Prerequisites: Either MATH 112 and MATH 113, or MATH 115

Goal Areas: GE-02, GE-03

Drafting principles involving use of computer electronic CAD software in laying out block diagrams, schematic diagrams, production drawings, graphical presentation of data, and printed circuit board layout and construction.

Prerequisites: EET 113

An introduction to semiconductor theory and circuits: includes characteristics curves, biasing techniques and small signal analysis of FETs and MOSFETs, feedback concept, BJT and FETs frequency response. Prereq: EET 114 or concurrent

Prerequisites: EET 113 

Spring - 17 Credits

Includes waves and sound, electricity and magnetism, light and optics, and topics in modern physics. Lecture and laboratory.

Prerequisites: PHYS 211 

An introduction to differential amplifier, linear and nonlinear operational amplifiers, power amplifiers, linear digital ICs, oscillators, power supplies, D/A, A/D conversion, four layered devices and their applications.

Prerequisites: MATH 121, PHYS 211, EET 222

A course that teaches how to write computer assembly language programs, make subroutine calls, perform I/O operations, handle interrupts and resets, interface with a wide variety of peripheral chips to meet the requirements of applications.

Prerequisites: EE 107 or EET 142

Use of development boards and assembly language programming to handle interrupts, interface with parallel I/O ports, memory, and timers. Experiments will involve signal and frequency measurements, data conversions, and interface design. EE 234 must be completed before taking this course or taken concurrently. If you would like to take it concurrently, please contact the instructor for permission.

Prerequisites: EE 234

An introduction to tools, equipment, materials, and techniques used in fabrication of electronic projects and printed circuit boards.

Prerequisites: EET 221

General Education Course * 3 credits

Third Year

Fall - 16 Credits

This course is an introduction to general chemistry. It is a non-laboratory class designed to prepare students for CHEM 201 or to be utilized as a general education course. This course will address more mathematical relationships than CHEM 106. Credit will not be given to students who have previously taken a chemistry course at or above Chem 111 and received a passing grade.

Prerequisites: none

Goal Areas: GE-03

Electrical power and magnetic circuit concepts, transformers, generators and motors (DC, synchronous, induction), special purpose motors, power-electronic motor drivers, prime movers/alternatives, generation, transmission/distribution, system stability/protection.

Prerequisites: EET 114, MATH 127, PHYS 212

Operational amplifier circuits utilized in filters, sensors, comparators, voltage regulators, device testing, measurement systems, multipliers, phase-locked loops, and A/D converters. Differential amplifier basics. Linear integrated circuit processing.

Prerequisites: MATH 127, EET 223

A study of a high performance microprocessor architecture. Applications of a microprocessor for monitoring and controlling systems will be studied. Optimal utilization of a microprocessors resources will be stressed. PC programming in assembly and a high level language.

Prerequisites: (EE 234 and EE 235) or EET 254

General Education Course * 3 credits

Spring - 17 Credits

An introduction to statistics with emphasis on the applied probability models used in Science and Engineering. Topics covered include samples, probability, probability distributions, estimation, one and two samples hypotheses tests, correlation, simple and multiple linear regressions.

Prerequisites: MATH 112 with grade of “C” (2.0) or better 

Create working programmable hardware using FPGA, GAL and other logic technology. Use industry standard tools such as Verilog, Xilinx, Orcad and Multisim along with development kits and extension boards to implement programmable systems. Interface LED displays, switches and I.O devices with programmable logic to create processing systems. Evolution of programming logic and analog circuits.

Prerequisites: EE 234 and EE 235 or EET 254

Communications principles and systems. Practical engineering aspects involved in modulation-demodulation, receivers, transmitters and filters. Also included are radiation and antennas, guided waves, microwaves and microwave systems. Course must be taken concurrently with STAT 221.

Prerequisites: EET 223

General Education Course * 3 credits

General Education Course * 3 credits

Fourth Year

Fall - 16 Credits

This course is focused on quality assurance systems, management philosophies, methodology, function and impact of quality systems in manufacturing operations. Development and application of statistical process control tools.

Prerequisites: STAT 154

Overview of accounting and finance and their interactions with engineering. Lectures include the development and analysis of financial statements, time value of money, decision making tools, cost of capital, depreciation, project anaysis and payback, replacement analysis, and other engineering decision making tools.

Prerequisites: Advanced standing in the program

Automation components and subsystems involving sensors, transistors, logic, amplifiers, software, microprocessors, PLC's, actuators, encoders, stages, motors, controllers and drives. Students design, simulate, build, test and document automation systems for Capstone projects.

Prerequisites: EET 223, EET 384

Elective Course in Major * 3 credits

General Education Course * 3 credits

Spring - 14 Credits

Continues building skills in automation components and subsystems involving sensors, transistors, logic, amplifiers, software, microprocessors, PLC's, actuators, encoders, stages, motors, controllers and drives. Students design, simulate, build, test and document automation systems for Capstone projects.

Prerequisites: EET 461 

Should be taken at end of junior year. Permission required. Pre: 40 hrs EET credits or written permission from program coordinator.

Prerequisites: none

Elective Course in Major * 4 credits

General Education Course * 3 credits